Agnieszka Hejna (fot.) (Uniwersytet Wrocławski & Rutgers University, USA) została tegoroczną laureatką Nagrody im. Kazimierza Kuratowskiego za cykl prac dotyczących badania uogólnień klasycznych twierdzeń analizy harmonicznej do kontekstu teorii Dunkla (w której klasyczne operatory różniczkowania na przestrzeni euklidesowej modyfikuje się przy pomocy pewnych operatorów różnicowych). Jury szczególnie doceniło wyniki laureatki dotyczące oszacowań występujących w teorii Dunkla jąder ciepła i wektorowych transformat Riesza. Nagroda ustanowiona w 1981 roku przez Zofię Kuratowską, Instytut Matematyczny PAN i Polskie Towarzystwo Matematyczne przyznawana jest naukowcom, którzy nie ukończyli 30 lat do końca roku poprzedzającego przyznanie nagrody i którzy nie są laureatami nagród PTM (z wyłączeniem nagród PTM dla młodych matematyków), ani też Nagrody Naukowej Wydziału III PAN.
kj / 11-05-2023